Segmentation of Medical Image using Clustering and Watershed Algorithms
نویسنده
چکیده
Problem statement: Segmentation plays an important role in medical imaging. Segmentation of an image is the division or separation of the image into dissimilar regions of similar attribute. In this study we proposed a methodology that integrates clustering algorithm and marker controlled watershed segmentation algorithm for medical image segmentation. The use of the conservative watershed algorithm for medical image analysis is pervasive because of its advantages, such as always being able to construct an entire division of the image. On the other hand, its disadvantages include over segmentation and sensitivity to false edges. Approach: In this study we proposed a methodology that integrates KMeans clustering with marker controlled watershed segmentation algorithm and integrates Fuzzy CMeans clustering with marker controlled watershed segmentation algorithm separately for medical image segmentation. The Clustering algorithms are unsupervised learning algorithms, while the marker controlled watershed segmentation algorithm makes use of automated thresholding on the gradient magnitude map and post-segmentation merging on the initial partitions to reduce the number of false edges and over-segmentation. Results: In this study, we compared K-means clustering and marker controlled watershed algorithm with Fuzzy C-means clustering and marker controlled watershed algorithm. And also we showed that our proposed method produced segmentation maps which gave fewer partitions than the segmentation maps produced by the conservative watershed algorithm. Conclusion: Integration of K-means clustering with marker controlled watershed algorithm gave better segmentation than integration of Fuzzy C-means clustering with marker controlled watershed algorithm. By reducing the amount of over segmentation, we obtained a segmentation map which is more diplomats of the several anatomies in the medical images.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملWatershed segmentation using prior shape and appearance knowledge
Watershed transformation is a common technique for image segmentation. However, its use for automatic medical image segmentation has been limited particularly due to oversegmentation and sensitivity to noise. Employing prior shape knowledge has demonstrated robust improvements to medical image segmentation algorithms. We propose a novel method for enhancing watershed segmentation by utilizing p...
متن کاملParallelization of Image Segmentation Algorithms
With the rapid developments of higher resolution imaging systems, larger image data are produced. To process the increasing image data with conventional methods, the processing time increases tremendously. Image segmentation is one of the many image processing algorithms, and it is widely used in medical imaging (i.e. find tumor in MRI), robotic vision (i.e. vision-based navigation), and face r...
متن کاملEvaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study
Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...
متن کامل